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1.0 INTRODUCTION

This report summarizes the work accomplished at Rensselaer to study phase distribution

phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to

develop sophisticated analytical models to predict phase distribution in two-phase flows under

variety of conditions. These models are based on physics and data obtained from carefully con-

trolled experiments that are being conducted here. These experiments also serve to verify the

models developed.

2.0 ANALYSIS

2.1 Conservation Equations

The generic conservation equation for each phase is given by:

%p‘I’+V-p‘Pv =V.-J+pf

The corresponding jump condition between components k and 1 is:

[(p¥(v-v) +]) -n],, =M,

where:

b4 ...conserved quantity

J ...conserved quantity’s flux

f ...conserved quantity’s source density

M; ...conserved quantity’s interfacial source
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Typical state variables are given in Table 1.

Table 1: State variables in generic conservation equations and jump conditions

Balance

Principle ¥ J f M;
Mass 1 0 0 0
Momentum v T g m;®
Energy u+%v2 T-v-q” g-V+r e
Enthalpy h -q” s

a r+l(ie+‘c:Vv) b;
p\dt

To obtain the conservation equations which govern the motion of turbulent dispersed

solid/fluid flows, the generic equation is first multiplied by the phase indicator function, Xy,

defined as:

X, = { 1, ifxek , and then averaged over all the possible realizations (ensembles). Drew
0, otherwise

et. al. [1995] define ensemble averaging of a function F at position X and time t, for some particu-

lar realization W, as:

F(x,t) = IF (x, t;u) dm (W) , where €, ensemble, is the set of all the possible realizations. Also,
€
if we consider a point on the interface while moving with it, we see that the phase indicator func-

tion, Xy, is a constant jump discontinuity. Therefore, its material derivative must be zero. That is,

____=-§- +V.-VXkE . (3)

By using the above equation and procedure, ensemble-averaged conservation equations for adia-



batic two-phase flow are obtained:

Mass Conservation

+Veo,p, ¥, = p(v-v) - VX, O]

Momentum Conservation

I, p, v,

= < T R _
3 +V.o,pvV = V-Xka+V~ak‘tke+akpkgk+p(v—vi) VX, (5)

Reynolds Stress Equation
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7 ’ ’ ’ ’ z ’
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(6
where,
k, ij p k, il axl akpk k zlaxl
and,
Wy = T (®)
kij = Vi ifax;”

Taking the trace of equation (8) we obtain,



Turbulent Kinetic Energy Equation

o, p ke
ot

+ V0, p k¥, = —0 0V VeV = Veoup kv, -V op, Y, ©)

+Voo1, v, —oup 8+ W +k (v=-v,) - VX,

Finally, we have the,

Turbulence Dissipation Equation
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2.2 Closure

2.2.1 The interfacial momentum source
The interfacial momentum source can be partitioned into drag and non-drag components

[Lahey & Drew, 1990], as.

M, = —T-VXk = M,ﬁD) +M,fND) 13)

For drag we may assume:

MC(D) = _MsD) - .é.chDlvAvrAi"' (14)

The non-drag component may be obtained assuming inviscid flow around spherical parti-
cles [Arnold, 1988; Park, 1992]. The average quantities were obtained using cell-averaging tech-
niques [Nigmatulin, 1979], which are an approximation to ensemble averaging. The resulting
expression includes virtual mass effects and a lateral force induced by the non-uniform flow field

around a spherical particle. The latter force is called lift force and is given by [Drew & Lahey

1987; 1990]:

L - <
M = Ciep. ¥, X Vv, (15)
The effects of the liquid turbulence interaction with particles/bubbles are included in the turbulent

dispersion force:

(ND), TD (ND),TD

2.2.2 Binary Collisions between the particles and the particle-wall collisions
Alajbegovic [1994] has developed closure laws for the stress induced in the dispersed
phase and the transfer of the kinetic energy. For brevity only the procedure used to derive the

expressions is described here. The following assumptions were made: collisions between more



than two particles at the same instant are negligible; all collisions are elastic with negligible rota-
tional effects. Starting from the expression for the average stress inside the dispersed phase given
by Bachelor, [1970] an integral expression for the collision-induced shear stress is obtained by
evaluating the probabilities of collisions of particles moving with given velocity, position and
size. This expression is similar to that obtained by Chapman and Cowling [1970]. This was fur-
ther integrated to obtain the final expressions. Similar procedure was used to calculate particle-

wall collision-induced force.

2.2.3 Turbulent Interfacial Work

The interaction between the dispersed particles and the eddies 1s governed by the follow-

ing equations:

doi 1

& T VeiTVed an
d, :

E—I(mcv ctmyV p) =0 (18)

The interfacial work due to particle interactions with the continuous phase turbulence is:

,  _pof W W )
Wd.ij"_(clv Ve, i~ C2Vp0,iV po,j a9

C, i

P (20)

2.2.4 Algebraic Stress model for the dispersed phase Reynolds Stress

Starting with the assumption that:

7’
Vivj

k

= const. 2n




it can be shown that:

S _kitp [ —— a"’d,j+ ——— 9, X
dVe,iVei"qaal V¥ digy TValYd; —Rij
d ! !
= (22)
v, ;
i3 Kl
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In case of negligible collisions and small gradients in the dispersed phase’s mean velocity,

the above equation reduces to:

VeV e (23)

The above models have been tested against experimental data obtained at Rensselaer and else-

where for various flow situations, and show remarkable accuracy.

3.0 Solid/Liquid Experiments

In a two-phase mixture for low volume fractions, the lift force is one of the most important
phenomena affecting the radial distribution of the flow. This effect is due to the relative velocity
between the two phases. Serizawa et. al. [1988] demonstrated that this lift force pushes bubbles

towards the wall in upward flows and towards the center of the conduit for downward flows.

Figure-1 shows how the gravity affects the hydrodynamic behavior of a turbulent two-
phase flow. We may eliminate the buoyancy force by using a dispersed phase of same density as
that of continuous phase. Assad et. al. [1995] measured the liquid and dispersed phase distribution
in a solid/liquid two-phase flow in a horizontal pipe using a Laser Doppler Anemometer (LDA).
The dispersed phase consisted of ~2.0 mm average diameter size expanded polystyrene particles
with specific gravity of 1.03. The test section was 30.6 mm in diameter and the pipe was made out

of a special optically clear material (FEP, Fluorinated Ethylene Propylene) with the same index of



refraction as water. Measurements for the velocity profile, turbulent structure and the volume

fraction for each phase were made for various flow rates and global volume fractions.

Figure-2 shows the schematic of the experimental facility used to make the measurements.
Water recirculated through the loop in continuous mode. A specially designed phase separator did
not allow the particles to go through the pump where they could be damaged. Figure-3 shows the
details of the phase separator. The phase separator has three principal components: a large diame-
ter tank, a venturi and a porous funnel i.e., screen. Water coming out of the pump goes through the
venturi creating a low pressure at the throat. This aspirates the particles into the stream coming
into the funnel from the loop. Thus flow coming out of the venturi carries with it all the particles,
while the funnel lets the loop water go to the pump inlet. The purpose of the large diameter tank is
to slow down the flow coming into the funnel. This arrangement makes sure that same global void

fraction is maintained at all times.

To have a check on the LDA measurements, a quick closing valve was used to measure the
global void fraction. A calibration was done to have precise information about the volume of the
pipe. A calibrated glass tube was used to measure the volume of the particles once they were
removed from the quick closing valve. After 12 measurements for each flow rate, the mean statis-
tical error was around 2.4%; thus the average of 12 measurements was appropriate to determine

the global fraction of particles.

The two-fluid model described above was incorporated into the PHOENICS code to test it against
the data for neutrally buoyant particles. Although the model was developed for vertical flows,
only, the neutral buoyant particle data for horizontal flows can still be compared against the calcu-

lations. Figures-4 and 5 show that the agreement with data is good.
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4.0 Liquid/Liquid Experiments

The particles which were used by Assad [1995] were solid spheres with a non-deformable,
non-slip interface. The flow dynamics around them are well understand and documented. In case
of bubbles and droplets, there is no solid interface; the fluid outside interacts with the fluid inside
giving rise to internal circulations and deformations. Pressure differentials can deform the surface
so that they are no longer spherical. All this affect the interfacial momentum transfer and the tur-
bulence structure in a significant way. However, if the droplets/bubbles are small enough, the
deformations is very small compared to their size and hence can be neglected. The liquid/liquid
experiments allow us to further verify our models and collect data to guide us in further enhance-

ments.

4.1 Summary of the work done earlier

The experimental facility and the measurement strategies have evolved from a closed-
loop, in-line oil separation mode to a batch mode with an oil droplet injector. Experience with the
components involved has guided us to improve the facility to have a better control over the

parameters involved.

Our search for a cost effective immiscible oil with same density as water at room temper-
ature led us to silicon oil and n-butyl benzoate as the dispersed phase. Thus, microgravity condi-
tions are simulated by matching the two densities closely, thus eliminating the buoyancy force.

The properties of these are well documented in various property tables. Butyl benzoate has a spe-

cific gravity of 1.0 at 20° C. Another property which is of concern is the change in density with
temperature. Butyl benzoate is more sensitive to temperature as compared to water. This is

extremely useful for separating the two fluids. Thus, by heating the mixture collected and elevat-

15



ing the temperature by 20°C the difference in density of the two fluids makes it possible to gravity
separate them. Also, butyl benzoate has a refractive index of 1.494 for which is good for LDA
measurement purposes and is 3.59 times more viscous than water. It has since been shown to have
satisfactory optical properties for Phase Doppler measurements. As a consequence butyl benzoate

will be used in out experiments.

Initially, our test facility consisted of a oil/water closed loop in which both the oil and
water were allowed to go through the pump. In one of the typical data sets, the mean diameter of
the droplets was found to be 181 microns while the range of sizes present was from 40 microns to
600 microns. A few large droplets of oil were also detected with sizes between 1.2 mm to 1.4 mm.
Unfortunately, after a period of time the pump formed an emulsion out of the mixture. Clearly, the
closed loop mode of operation was not suitable for obtaining mono-dispersed droplet flows. This
motivated us to consider open loop operation with an injector to produce a mono-dispersed sus-

pension.

A droplet injector was designed and has been constructed with the following characteris-
tics: (i) ability to control the flow rate of water, (ii) ability to control the diameter of the oil drop-
lets, (iii) ability to control the relative flow rates of water and oil to obtain desired global void
fraction, and (iv) most importantly, the droplet size distribution should be as small as possible.
Indeed, we want a mono-dispersed flow so that a correlation between the size of the droplet and
the phase distribution phenomenon may be established. The obvious choice to achieve the above
objectives is to have capillary tubes as injection units. Initially it was not clear whether the last
requirement above could be met or not and whether we can predict the size of the droplets being
formed if size of the tubes is known. A preliminary calculation was done to predict the size of the

droplets as a function of oil volume flow rate, velocity of the stream trying to shear off the drop-
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lets from the tips and the size of the capillary. This was guided by the work done by several
researchers [Hayworth et. al., 1950; Null et. al., 1958] where a balance between the drag on the
spherical droplet being formed at the tip due to the fluid motion and the cohesion forces due to
surface tension yielded a correlation between the droplet size form and the capillary size with
fluid velocity as a parameter. This droplet injector has been tested and appears to be functioning

as predicted.

The separation of oil from water will be accomplished by heating the mixture to 40°C and
then, as described earlier, the oil floats to the top where it can be decanted off. If any traces are
still left, they can be separated with a dedicated centrifuge unit. In-line separation processes were
extensively explored without finding any feasible option. The batch options turns out to be conve-
nient enough with a down time of a couple of hours between two runs which can be utilized for

processing data and preparing for the next run.

Some data was obtained for single-phase and two-phase flows for various Reynolds num-
ber to give us an idea of trends to be expected and to fine tune the instrumentation involved. No
notable difference was observed between the two-phase data and the single-phase data because
the droplets were very small in size. During these tests, LDA data was found to be inadequate to
estimate the size of the droplets accurately. This inadequacy stems from the method of interpret-
ing the transit time of a burst as an indicator of the size of the droplets. This mode of droplet size
estimation can only be used to get an approximate idea of the size distribution. For more accurate
data we may use a Fiber Phase Doppler Anemometer (FPDA) which relies on the phase differ-
ence between the reflected light detected by two detectors, a fixed distance apart, to determine the

size of the droplet.
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An additional limitation of the facility was encountered when the FPDA was used to
obtain size and velocity data. To obtain data, the transmitting and receiving probe’s measuring
volumes must coincide at all locations while traversing. It was realized that if alignment is made
at one point then it is impossible to traverse to another location without loosing the alignment.
This happens because of the differential change in the optical path of the signal to the receiving
probe. This can be solved by using a FEP conduit and submerging both the probes under water so

that the optical path length does not change when traverses are made.

As described above all the subtasks mentioned in the previous report have been accomplished.

Now the work is in progress is focussed on acquiring the actual data.

4.2 Work done since the last report

4.2.1 The oil-water loop

As described in the previous report a batch mode oil/water loop has been built and tested.
The schematic of the loop is shown in figure-6. To summarize, this design was decided upon

because of two reasons:

(1) We could not find a viable in-line full flow separation process for neutral buoyant oil in
water. Rather, separation will be done in batches by heating the mixture followed by gravity
separation.

(2) To avoid the realignment of the FPDA probe at each measurement location. In the current
facility the probes and the FEP test section are all immersed in water so that no correction or

alignment has to be done for measurements at different locations.
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4.2.2 The oil/droplet injector

The oil droplet injector was tested to find out the effect of oil and water flow rates on the
size distribution of droplets. A small test loop was constructed outside of the main test facility for
ease of observation and control. Figure-7 shows a schematic of this facility. Two methods were
used to measure the droplet size distribution. The first method used was to collect the droplets in a
glass petridish and estimate the size of the droplets by placing them on graph paper. The results
have been recorded with a CCD camera for future reference. The drawback of this method was
that the droplets coalesced in a short time. Also the collection process itself affects the droplets.
The second method was to take pictures of the droplets as they passed through the box with win-
dows. These two methods combined to give us a good indication of the injector performance. Fol-

lowing conclusions were drawn from the data obtained:

(1) The droplet size decreases with an increase in water flow rate.
(2) The average droplet size increases with the increase in oil flow rate and at the same time the

spread in the size distribution increases.

Figure-8 shows a selection of photographs taken for the droplets.

4.2.3 Optimization of the FPDA for the oil/water mixtures

A study was done to verify that an FPDA can measure oil droplet size. This was necessary
to optimize the setup variables and verify the optical properties of oil in the context of the FPDA
measurements. Figure-9 below shows the experimental facility used for this purpose. A small
glass tank was filled with a known amount of water. It was determined that the reflection mode of
diameter measurement is most suited for actual measurements. The power of the laser in all cases

was kept low (~200 mW). Also the vertical component of velocity was small. These are certainly
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not the best settings but once the system has been optimized at these settings then the scaling the
experiment to faster velocities and higher power will not be difficult and should result in large
improvements. This experiment was done in three stages. Stage one consisted of alignment and
measurement of particle sizes and velocity, using glass bubbles as seeding. This constitutes the
optimum case to start with because of the large relative refractive index of glass with respect to
water. Stage two consisted of redoing the work of stage one but without any glass seeding. The
third and final stage consisted of adding oil into the tank with increasing global void fractions.
Two void fractions were measured: 0.07% and 0.21%. Larger void fractions could not be tried
because of the formation of an emulsion by the stirrer. This increased the turbidity of the mixture
to such a large extent that the measurement rate decreased by a factor of 10. Table 2 below shows
the data obtained. Runs a0l through a04 are tests with glass seedings, a05 through a07 were with-
out any seeding, a08 with a 0.07% volume fraction of oil and a09 with 0.21% volume fraction of
oil. As indicated earlier the velocities involved were very small and it was observed that even a

small increase in the velocity resulted in a very large increase in the acceptance rates.

Figure-10 shows the seeding size distribution in which 3.5 cc of the seeding was used to
seed 19.6 liters of water. A sample of the seeding was analyzed under a travelling microscope to
determine the sizes present. The glass seeding sizes were found to be in the range 5 um to 100
pm, with most of them in 25 to 50 um range. Although the data is not statistically representative
of the distribution, it gave us the bounds on size. The histogram in figure-10 is accurate to that
extent with most particles the same range as above. Optimization of the alignment and different
parameters led to different trials with most of them resulting in the similar distribution. The best

settings correspond to trial number 11 in the a04 series.
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Figure-11 shows the particle size distribution in unseeded water. The particles measured
are the natural seeding suspended in the water supply. Most of the particles are in range 0 to 20
um. Figure 12 shows the oil droplet size distribution for a volume fraction of 0.07%. Immediately
after the measurements were done with unseeded water, 15.5 cc of oil was added. The stirrer
immediately broke up the oil globules into small droplets and a delay of about 10 minutes was
allowed before measuring to allow the system to stabilize. The histogram in figure-12 shows the
range of sizes present is 0 to 340 pm. Most of the particles are below 100 pm in diameter. If this is
compared with the figure-11, it is practically impossible to say which of the data belong to the
droplets and which to the natural seeding especially in the 0-25 um range. This is the case with
low volume fraction, however at higher volume fraction, the data percentage in this range must be
small to be able to neglect the influence of natural seeding. This was confirmed by adding more
oil to the tank, the resulting void fraction being 0.2%. Figure-13 shows a typical data set obtained
at this volume fraction. Here most of the droplets are in range 40 to 100 pm and the fraction of
particles/droplets less than 20 pm is very small. With the injector in the main loop, we should be
able to keep the global void fraction relatively large enough without any emulsification. Thus we
are confident that with large sample sizes, the data will be representative of the true droplet size

distribution.

Interfacial area is a quantity of interest for estimating the interfacial mass, momentum and
energy transfer. Figures 14 and 15 show the same information as in figures 10 through 13 in terms

of interfacial area.
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FIGURE 8. Photographs with oil droplets, magnification=5.34
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Table 2: Data from the FPDA trials

T | nga, | Umen | Ve D | adned |, | Daakee | SRS
ce (sec)
a0l.dat | 1. .166 .103 - 390. 325 .6 654.35
a02.dat | 1. 419 175 - 500. 27.6 1.0 525.75
a03.dat | 1. 330 2.149 - 2000. 78.8 6.9 290.27
a04.dat | 1. 762 376 31 250. 217 1.8 138.66
a04.dat | 2. 1.185 434 33 250. 24.5 2.1 118.88
a04.dat | 3. 1.237 .103 49 250. 7.8 6 43547
a04.dat | 4. 137 357 29 250. 20.9 1.7 149.90
a04.dat | 5. 942 321 32 250. 17.2 1.6 158.04
a04.dat | 6. 1.040 328 37 250. 19.5 1.7 150.24
a04.dat | 7. 1.021 302 36 250. 18.7 1.5 167.54
a04.dat | 8. .663 263 30 250. 159 1.3 198.25
a04.dat | 9. 1.225 236 30 250. 21.1 1.1 22434
a04.dat | 10. 1.580 122 11 3s. 104 i 52.42
a04.dat | 11. 1.180 284 29 250. 16.6 14 176.09
a04.dat | 12. 1.289 230 36 250. 12.9 1.2 216.08
a04.dat | 13. 1.763 177 25 250. 9.5 9 270.24
a04.dat | 14. 1.173 048 23 14. 20 2 62.50
a05.dat | 1. -789 281 62 38. 48 5 76.50
a06.dat | 1. -.561 125 52 174. 44 4 387.85
a06.dat | 2. 450 234 37 254. 11.9 1.0 261.15
a06.dat | 3. 238 232 68 187. 12.8 1.1 171.37
a06.dat | 4. -.173 284 58 157. 14.2 1.2 136.25
a06.dat | 5. 524 182 105 80. 8.7 8 104.10
a06.dat | 6. -.580 .150 14 23. 6.0 6 37.16
a06.dat | 7. 289 .166 11 51. 8.9 8 67.01
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Table 2: Data from the FPDA trials

e | TaaiNo, | e | L gl Acceptan Data Rate “Tne.

ce (sec)
a06.dat | 8. 1542 |.016 |11 6. 9 1 84.54
a06.dat | 9. ‘1361 051 |11 1. |22 |2 87.00
a06.dat | 10.  |-377 |.187 |48 29. |76 |3 59.53
a07.dat | L. 984|182 |101 |83 |94 |6 145.87
a07.dat | 2. 402 |28 |48 |37 100 |6 63.90
a08.dat | 1. 321|088 |18 45. |47 |3 135.65
a08.dat | 2. 286|191 |76 129. (93 |6 224.69
a08.dat | 3. 1142 |.185 |84 64. 105 |5 12121
a08.dat | 4. 3115 | 322 |10 [179. [154 |9 194.60
a08.dat | 5. 2091 | 464 122|119 [211 |12 101.97
a08.dat | 6. 3538 |53 |90 256.  |263 |16 155.78
a08.dat | 7. 3685 |.567 130 262 [261 |19 135.23
a08.dat | 8. 3371 | 726|108 |260. |336 |24 107.73
a08.dat | 9. 2967 |.652 |121  |174.  [306 (22 | 7955
a08dat | 10. | 4479 |.741 |13 |250. |308 |25 102.26
a08dat |11, |4069 |.757 |16 [259. [303 |23 110.83
208dat | 12.  |3583 |.863 |11 |258  [308 |25 102.19
a08dat | 13 |3977 1511 |12 |26l |153 |46 | 5645
08.dat | 14. | 4246 | 1512|112 |260. (262 |46  [S675
08.dat |15 |3.698 |1811 |136  |264. [231 |50  |5297
a09.dat | 1. 4143 | 475 164|262 [202 |18 145.64
a09.dat | 2. 3701 | 381|225 |275.  |195 |17 162.98
a09.dat | 3. 3779 | 286|255 276 [160 |12 |238.02
a09.dat | 4. 3618 | 201 243 275, |136 |8 328.21
a09.dat | 5. 3381 |79 244 275|128 |8 355.87
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4.3 Work in Progress

With all the tests done outside the main loop, we are now ready to do the actual measure-
ments of oil/water flows. The probes and necessary optics have been installed in the tank and the
work is being done on the alignment of the probes. We are hoping that the larger oil droplets to be
used will not form a film on the wall of the test section. Earlier experiments with the oil going
through the pump showed such a tendency when the oil droplets were very small. However, with
the new injector in the loop, it is unlikely that this will happen again. Needless to say the presence

of the oil film on the wall is detrimental to our experiment.

4.4 Proposed future work

The main thrust of the future work is to put an experiment aboard the space shuttle. The
objective of the experiment is to measure phase separation in an air/water mixture. The emphasis
is on simplicity and efficiency in conducting the experiment and to provide adequate instrumenta-
tion of acquire a complete set of data. These data can then be used for further understanding the
dynamics of bubbly flows in space. The instrumentation will consist of: (i) a two-dimensional pen
Laser Doppler probe; (ii) a Phase Doppler Anemometer; (iii) a real time Fast Fourier Transform
system, a phase discriminator, a high voltage generator and a demodulator, all fitted on a single
PC card; (iv) a one-dimensional hot film anemometer; (v) a traversing mechanism, and (vi) a
CCD camera. We will measure two-dimensional velocities with the LDA, one dimensional veloc-
ities and the local void fraction with the hot film probe, size distribution of the bubbles with the
CCD camera and the FPDA. All these will be measured as a function of radial position for two
axial locations: one close to the inlet and one close to the outlet. These data will allow us to com-
pute bubble coalescence and breakup as well as the developing phase distribution. These instru-

ments will be progressively tested and calibrated in experiments in drop-towers and parabolic



flights in Lear Jets. The loop itself will be a recirculating loop. A sine pump will circulate the mix-
ture. For monodispersed experiments, we will separate the water from air using a centrifuge. For a
arm length of 10 cm we will need about 600 rpm to simulate normal gravity. A specially designed

injector will be used to generate the bubbles.
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